Volume 6, Issue 1 (2025) e-ISSN: 2716-666X

The Asian Journal of Professional and Business Studies

Please cite this article as:

Saputra, A., Zulfanetti, Z., & Mustika, C. (2025). The Determinants of Regional Revenue Collection: A Case Study of Equipment and Machinery Rental at the Public Works and Public Housing Office of Jambi Province. *The Asian Journal of Professional & Business Studies*, 6(1), 188–199. https://doi.org/10.61688/ajpbs.v6i1.410

DETERMINANTS OF REGIONAL REVENUE COLLECTION: A CASE STUDY OF EQUIPMENT AND MACHINERY RENTAL AT THE PUBLIC WORKS AND PUBLIC HOUSING OFFICE OF JAMBI PROVINCE

Ade Saputra¹, Zulfanetti², Candra Mustika³

[1,2,3] Economics and Business, Jambi University

Corresponding author: adesapoetra 7@gmail.com

Received 2 June 2025, Accepted 25 June 2025, Available online 29 June 2025

ABSTRACT

The purpose of this research is to determine and analyze the effects of fixed assets, asset inventory, retribution rates, and infrastructure spending on the revenue from equipment and machinery rental fees at the Public Works and Public Housing Office of Jambi Province. The analysis method uses secondary data with quantitative descriptive analysis. The variables used consist of independent variables, namely the Value of Fixed Assets, Asset Inventory of Equipment and Machinery, and Infrastructure Spending Retribution Rates, while the dependent variable is equipment and machinery rental revenue. The analytical tool used is multiple linear regression, with hypothesis testing using F and t statistics. The results show that the Value of Fixed Assets has an effect on revenue from retribution. The Asset Inventory of Equipment and Machinery does not affect the revenue from retribution. The Retribution Rates affect the revenue, and Infrastructure Spending also affects the revenue from retribution.

Keywords: Value of Fixed Assets, Inventory of Equipment and Machinery Assets, Infrastructure Expenditure Retribution Rates, and Equipment and Machinery Rental Revenue

1.0 INTRODUCTION

One source of regional own revenue is regional retribution, which is expected to help finance local governance to become more autonomous, allowing them to manage their own affairs aside from receiving subsidies and assistance from the government. Additionally, regional retribution can be defined as payments for specific services or permits provided by local governments for the benefit of individuals or entities. General service retribution, business service retribution, and specific permit retribution are sources of regional retribution. According to Law Number 33 of 2004 on financial balance between the central and local governments, regional retribution is established as one of the revenue sources originating from within the region and can be developed according to local conditions.

The source of Business Service Retribution includes services provided by local governments based on commercial principles, such as services utilizing regional wealth that has not been optimally utilized, and/or services by local governments where adequate provision is not met by the private sector (Yunita & Adriana, 2020). One type of Business Service Retribution is the retribution for the Use of Regional Wealth (PKD). PKD retribution has significant impacts on regional development and the increase of local revenue (Muslimin et al., 2022).

The Public Works and Public Housing Office of Jambi Province, through the ALKAL Division, manages the payment of regional retribution, particularly for the rental of equipment and machinery (heavy equipment). Given the important role of regional retribution in supporting local development, the implementation of heavy equipment rental retribution payments managed by the ALKAL Division requires optimization and efficient administration. Equipment and machinery rental retribution is part of the retribution for the utilization of regional wealth, categorized as the use of local government property for revenue-generating activities. Jambi Province, as a central city focused on infrastructure development, greatly needs heavy equipment to facilitate the construction process. However, the contribution of this retribution remains limited and has not significantly impacted the revenue from equipment and machinery rentals.

Optimal management of regional assets is crucial as it plays a key role in enhancing local revenue, supporting the government's function as a public service provider, and forming the basis for structured and orderly financial reporting (Rahmawati Muslimin & Kitta, 2023). One example of regional asset management is government-owned equipment and machinery, which are strategically important for infrastructure development and increasing local retribution. These assets, such as heavy equipment, construction machinery, and various technical tools, often represent significant investments by local governments that can be utilized not only for internal interests but also for the wider community through rental mechanisms. Noviawati (2016) states that regional asset management is a key factor in supporting a region's economic success. By applying good governance principles, professional and modern asset management is expected to enhance public trust in state financial management.

Transparent, accountable retribution policies aligned with community purchasing power will encourage high participation rates in equipment rentals, thereby increasing local revenue. However, these policies must be based on careful calculations to ensure that the retributions imposed do not become a heavy burden for the community or businesses. Local governments can leverage local potential to provide services at lower costs. With good management, equipment and machinery can be rented out more frequently, increasing revenue through retribution. Policies that support accessibility to equipment and machinery for the public can stimulate local economic growth by enhancing productivity in key sectors.

The equipment and machinery rental sector, particularly managed by the Public Works and Public Housing Office of Jambi Province, plays a vital role in supporting various infrastructure development projects and other operational activities at the local level. This sector's importance is increasingly relevant given the demands for efficiency and effectiveness in public development projects. As the need for quality infrastructure rises, the demand for efficient, reliable, and economical equipment rentals also grows. This necessitates a rental system that is not only transparent and easily accessible to users but also guarantees high-quality service.

Sustainable economic development in a region heavily depends on infrastructure spending. Infrastructure budgets must be allocated to support the procurement of fixed assets such as machinery and equipment used in local development projects. Adequate infrastructure will enhance productivity, competitiveness, and public services. As more projects require heavy equipment for development, appropriate infrastructure spending will increase the profits from equipment and machinery rentals by the Public Works and Public Housing Office of Jambi Province. Therefore, effective infrastructure spending can boost community revenue and economic growth through increased retribution.

Research on the contributions of taxes and regional retribution has shown that increasing local retribution revenue can significantly impact overall regional income. For example, a study conducted in Manado categorized local payments into three main types: general service payments, business service payments, and specific permit payments. According to this research, each type of retribution plays a crucial role in creating a stable and sustainable revenue source in the region. One of the key factors supporting development and public services among these categories is business service payments, which include the rental of local assets such as machinery and equipment.

With the increase in regional retribution combined with effective asset management and appropriate tariff setting, there may be a rise in retribution revenue. Therefore, one of the primary ways to enhance local fiscal capacity is by optimizing the retribution potential from the business service sector. Previous studies have shown that increasing retribution revenue from business services, particularly heavy equipment rentals, not only enhances the financial stability of local governments but also improves the quality of infrastructure that supports economic growth.

The successful management of equipment and machinery rental retribution plays a vital role in boosting local revenue, which can be used to finance development, provide public services, and improve community welfare. Optimal management, especially in rental policies, can serve as a key strategy to strengthen local finances and analyze the impact of rental retribution management on increasing local income, as well as its contribution to inclusive and sustainable economic growth

2.0 LITERATURE REVIEW

Assets

Assets, derived from the English word "asset," refer to items or objects that have economic, commercial, or other value owned by individuals, organizations, companies, or institutions. According to the Government Regulation of the Republic of Indonesia Number 71 of 2010 on Government Accounting Standards, an asset is a resource owned or controlled by the government as a result of past events, expected to provide economic or social benefits in the future. These assets can be measured in monetary terms and include non-financial resources used to provide public services as well as resources retained for historical or cultural reasons.

Asset Inventory

Inventory is the process of recording all assets owned by an organization, including physical assets such as land, buildings, vehicles, equipment, and machinery. The main objective of this inventory process is to obtain accurate information regarding the quantity and condition of assets, allowing for more efficient and effective asset management (Arif, 2021).

Retribution tariffs

Retribution tariffs are amounts of money or percentages set to determine the payment that individuals or entities must pay for services provided by local governments. According to the Regulation of Jambi Province Number 8 of 2019 on Business Service Retribution, these tariffs are established by considering principles of fairness, community affordability, and the costs required to provide the services. Thus, the setting of retribution tariffs takes into account not only financial aspects but also the social and economic impacts on the community of service users

Infrastructure spending

Infrastructure spending, or capital expenditure, according to Nordiawan (2006), refers to government expenditures aimed at acquiring specific fixed assets. Its primary purpose is to obtain fixed assets such as equipment, buildings, and infrastructure. There are three ways to acquire fixed assets: through purchase, exchange for other assets, or through self-construction.

Rental Fees for Equipment and Machinery

In Article 1 number 64 of Law Number 28 of 2009 concerning Regional Taxes and Regional Levies, it is stated that regional levies are charges imposed by the Regional Government as payment for certain services or permits provided for the benefit of individuals or entities. Boediono (2001:14) explains that a levy is a payment made by individuals who directly enjoy state services. Meanwhile, according to Juli Panglima Saragih (2002:65), Regional Levies are a type of

regional revenue collected as payment or direct compensation for services provided by the Regional Government to the community.

3.0 METHODOLOGY

Research methods are systematic and scientific ways to obtain data to achieve specific objectives. Based on the research goals outlined, this study employs a descriptive method with a quantitative approach. This approach is applied to test theories, establish facts, identify relationships and influences between variables, and compare these variables. Additionally, it is used to provide statistical descriptions, interpret results, and draw conclusions (Siregar, 2010).

Multiple Linear Regression Analysis is used to test hypotheses related to the relationship between two or more independent variables and a single dependent variable. This analysis aims to determine the extent of the influence of independent variables, such as fixed assets, asset inventory, and retribution tariffs for equipment and machinery rentals, on the dependent variable, which is the revenue from equipment and machinery rentals.

In this research, the multiple linear regression model will be applied to identify and measure the extent of the influence and relationship between independent and dependent variables. By utilizing multiple linear regression, it will be determined whether variables like the value of fixed assets, asset inventory, and retribution tariffs significantly affect the revenue from equipment and machinery rentals collectively. This model will also help estimate relationships between variables and provide a clearer understanding of each factor's contribution to enhancing retribution revenue.

The multiple linear regression analysis will be conducted using statistical analysis tools such as SPSS or other statistical software to generate regression coefficients that describe the strength and direction of the relationships among the variables studied (Sugiyono, 2013):

$$Y = a + b1X1 + b2X2 + b3X3 + b4X4 + et$$

Keterangan:

Y = Equipment and Machinery Rental Revenue

X1 = Value of Fixed Assets

X2 = Asset Inventory

X3 = Retribution Tariff

X4 = Infrastructure Spending

A = Nilai Konstanta b = Koefesien regresi et = Disturbance term.

4.0 FINDINGS AND DISCUSSION

Multiple linear regression is a statistical analysis method used to examine the relationship between multiple independent variables and a single dependent variable. This technique aims to determine the extent to which independent variables, such as the value of fixed assets, asset investment, retribution tariffs for equipment and machinery rentals, and infrastructure spending, influence the revenue from equipment and machinery rentals. By employing multiple linear regression, it is possible to obtain information regarding the contribution of each independent variable to the dependent variable, as well as the direction and significance level of these relationships.

Table 1 Results of Multiple Linear Regression Test.

Dependent Variable: Equipment and Machinery Rental Revenue					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
Constant	-1.42E+08	1.63E+08	-0.872276	0.0403	
Value of Fixed Assets	0.004365	0.024121	0.180951	0.0168	
Asset Inventory	731780.0	18050970	0.040540	0.0968	
Retribution Tariff	67.73368	73.97523	0.915626	0.0381	
Infrastructure Spending	0.000175	0.000266	0.657410	0.0258	

Source: Data processed using Eviews 9 program

The results of the multiple linear regression indicate that the revenue from equipment and machinery rental fees is influenced by several independent variables: the value of fixed assets, equipment and machinery inventory, fee rates, and

infrastructure spending. The constant value (C) is -1.42E+08 with a probability value of 0.0403, which is statistically significant at the 5% significance level. This means that if all independent variables are zero, the revenue would decrease by 142 million units, although logically, this value serves only as an intercept. The negative constant value indicates the need for these determining factors to ensure that regional revenue remains stable and grows.

Based on Table 1, the value of fixed assets has a coefficient of 0.004365 with a probability value of 0.0168 (< 0.05), indicating significance. An increase in fixed assets has a positive relationship with an increase in revenue. Equipment and machinery inventory has a coefficient of 731,780.0, but the probability value is 0.0968 (> 0.05), meaning it is not significant. Although it has a positive effect, it is not strong enough statistically in this model. The fee rate has a coefficient of 67.73368 and a probability of 0.0381 (< 0.05), indicating significance. This means that adjusting the fee rates has a direct impact on increasing revenue. Infrastructure spending has a coefficient of 0.000175 and a probability value of 0.0258 (< 0.05), also indicating significance. Each increase in infrastructure spending significantly boosts revenue from fees.

Results of the F Test (Simultaneous)

The F test results show an F-statistic value of 2.86266 with a probability value (Prob. F-statistic) of 0.193672. Based on the decision-making criteria, the null hypothesis (H_0) is accepted if the probability value is greater than the significance level of 0.05. In the obtained results, the probability value of 0.193 > 0.05, so it can be concluded that simultaneously the independent variables in the model have no significant effect on the dependent variable.

Table 2 Test Results F

Dependent Variable: Y			
R-squared	0.426982	Mean dependent var	1.91E+08
Adjusted R-squared	0.197775	S.D. dependent var	1.54E+08
S.E. of regression	1.38E+08	Akaike info criterion	40.58849
Sum squared resid	1.91E+17	Schwarz criterion	40.82451
Log likelihood	-299.4137	Hannan-Quinn criter.	40.58598
F-statistic	1.862866	Durbin-Watson stat	2.103853
Prob(F-statistic)	0.193672		

Source: Data processed using the EViews 9 program

The interpretation of this result indicates that the regression model used has not been able to explain a strong relationship between the independent variables and the dependent variable. This could be due to several factors, such as the selection of less relevant independent variables, a limited sample size, or the presence of other variables outside the model that significantly influence the dependent variable. Therefore, further analysis is needed, such as adding more suitable predictor variables or increasing the number of observations, in order to improve the validity and significance of the model in explaining the variation in the dependent variable.

Results of the T-test (Hypothesis)

The t-test is a type of inferential statistical method used to test the significance of the difference in means between two groups or to compare the mean of a sample with a reference value (Gosset, 1908). In quantitative research, this test is applied while considering basic assumptions. Here are the results of the t-test data processing using the EViews 9 application.:

Table 3 Results of the t-test.

Dependent Variable: Equipment and Machinery Rental Revenue					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
Constant	-1.42E+08	1.63E+08	-0.872276	0.0403	
Value of Fixed Assets	0.004365	0.024121	0.180951	0.0168	
Asset Inventory	731780.0	18050970	0.040540	0.0968	
Retribution Tariff	67.73368	73.97523	0.915626	0.0381	
Infrastructure Spending	0.000175	0.000266	0.657410	0.0258	

Source: Data processed using the Eviews 9 program

The t-test results show that the value of fixed assets has a coefficient of 0.004365, a t-statistic value of 0.180951, and a probability value (p-value) of 0.0168. The fixed asset variable has a probability value of 0.0168 (< 0.05). This means H₁

is accepted, concluding that the fixed asset variable significantly affects the revenue from equipment and machinery rentals in a partial manner. In other words, the greater the value of fixed assets, the larger the contribution to increasing regional revenue. This finding emphasizes the importance of optimizing the use of fixed assets as a strategic fiscal instrument to drive local income both directly and indirectly.

The equipment and machinery inventory variable shows a coefficient of 731,780.0, a t-statistic value of 0.040540, and a probability value of 0.0968. The inventory variable has a probability value of 0.0968 (> 0.05). Therefore, H_2 is rejected, indicating that the inventory of assets does not significantly affect the revenue from equipment and machinery rentals in a partial manner. This suggests that inventory activities are not yet effective enough to boost regional revenue unless accompanied by productive asset utilization and management strategies.

The fee rate for equipment and machinery has a coefficient of 67.73368, a t-statistic value of 0.915626, and a p-value of 0.0381. The fee rate variable shows a probability value of 0.0381 (< 0.05). Since H₃ is accepted, it means that the fee rate variable significantly affects the revenue from equipment and machinery rentals in a partial manner. This indicates that increasing the fee rates directly impacts regional income, provided that the set rates remain within the bounds of fairness and public service efficiency. Therefore, the policy for setting fee rates should be managed carefully to avoid decreasing public compliance.

For the infrastructure spending variable, the t-test results show a coefficient of 0.000175, a t-statistic value of 0.657410, and a probability value of 0.0258. The infrastructure spending variable has a probability value of 0.0258 (< 0.05). Thus, H₄ is accepted, concluding that the infrastructure spending variable significantly affects the revenue from equipment and machinery rentals in a partial manner. This finding reinforces the view that local government investment in infrastructure can create positive economic impacts, including an increase in local revenue. Targeted infrastructure spending, particularly that which supports local economic activities, can be a crucial catalyst in sustainably strengthening the fiscal base of local governments.

Results of the Coefficient of Determination (R2)

Coefficient of Determination (R^2) is a statistical measure used to assess the extent to which the independent variables in a model can explain the variation that occurs in the dependent variable. The value of R^2 ranges from 0 to 1, where the closer it is to 1, the greater the ability of the independent variables to explain the dependent variable simultaneously. Conversely, if the R^2 value is close to 0, the model used is less capable of describing the variation in the dependent variable. This analysis is important in evaluating the quality of the regression model used in research.

Table 4 Results of the Coefficient of Determination (R^2) .

Dependent Variable: Y		, ,	
R-squared	0.426982	Mean dependent var	1.91E+08
Adjusted R-squared	0.197775	S.D. dependent var	1.54E+08
S.E. of regression	1.38E+08	Akaike info criterion	40.58849
Sum squared resid	1.91E+17	Schwarz criterion	40.82451
Log likelihood	-299.4137	Hannan-Quinn criter.	40.58598
F-statistic	1.862866	Durbin-Watson stat	2.103853
Prob(F-statistic)	0.193672		

Source: Data processed using Eviews 9 program

Based on the results of the coefficient of determination, the obtained R-Square value is 0.42 or 42.6%. This value indicates that the independent variables in the regression model can only explain 42.6% of the variation that occurs in the dependent variable, while the remaining 57.4% is influenced by other variables not included in the model. This suggests that the model used has a relatively low level of reliability in explaining the relationship between the independent and dependent variables.

Analysis of the Influence of Fixed Asset Values on the Revenue from Equipment and Machine Rental Fees at the Public Works and Spatial Planning Office of Jambi Province

The regression coefficient for the fixed asset variable is 0.004365 with a probability value of 0.0168, indicating significance at the 5% level. This result shows that an increase in the value of fixed assets positively influences the increase in rental fee revenue. In other words, each unit increase in fixed asset value will raise regional revenue by 0.004365 units, assuming other variables remain constant. This highlights the importance of optimal management of

regional assets to ensure that fixed assets contribute significantly to regional income, both directly and through improved public service efficiency.

Supporting research, such as that by Rahayu and Sunarti (2019), states that an increase in the value of regional fixed assets positively contributes to the increase in Local Revenue, particularly from the service fee sector. This is because the larger the fixed assets, such as heavy equipment and machinery, the greater the potential for utilizing these assets for rental and generating fees.

Thus, fixed asset value can be seen as a significant positive factor affecting fee revenue. This aligns with economic logic: as the fixed assets (like tools and machinery owned and rented out by the Public Works and Housing Office) increase, the potential income from rental fees will also rise. Therefore, optimizing the utilization of fixed assets can be an important strategy for enhancing revenue from equipment and machinery rentals in the fee sector.

Analysis of the Impact of Asset Inventory of Equipment and Machinery on Revenue from Equipment and Machinery Rental Fees at the Public Works and Housing Department of Jambi Province

The regression coefficient for the equipment and machinery inventory variable is 731,780.0 with a probability value of 0.0968, which is greater than the 5% significance level (0.05). Although the relationship indicated by the coefficient is positive—meaning that an increase in inventory tends to be followed by an increase in fee revenue—statistically, this relationship is not strong enough to be considered significant. One possible reason for this is that the inventory activities have not been accompanied by effective asset utilization strategies or that there is insufficient integration of inventory data with the operational activities of equipment and machinery rentals.

Research by Maharani and Supriyanto (2021) reveals that inventory data that is not followed up with optimal asset utilization, such as rental systems or equipment promotion, fails to significantly enhance regional revenue. Therefore, it is recommended that the Public Works and Housing Office of Jambi Province not only focus on inventory activities but also ensure that this data is used strategically in planning, rental promotion, and asset optimization. By doing so, inventory will not merely be an administrative task but will serve as an important foundation for improving regional revenue performance from the service fee sector.

Analysis of the Influence of Equipment and Machinery Retribution Rates on the Receipts of Equipment and Machinery Rental Retribution at the Public Works and Spatial Planning Office of Jambi Province

The fee rate for equipment and machinery has a regression coefficient of 67.73368 and a probability value of 0.0381. With a p-value < 0.05, this variable significantly affects the revenue from equipment and machinery rentals. Substantially, the positive coefficient indicates that an increase in the fee rate will boost revenue, assuming other variables remain constant. This means that the higher the rate set by the Public Works and Housing Office of Jambi Province for the use of equipment and machinery, the greater the contribution to Local Revenue from the fee sector.

Based on these results, the hypothesis stating that the fee rate significantly affects rental revenue is accepted. This finding suggests that an appropriate, transparent, and competitive fee-setting strategy can serve as an important lever for optimizing revenue.

This conclusion is supported by the research of Wulandari and Yusnita (2020), which indicates that adjustments in fee rates, accompanied by improved services and asset management, can increase public interest in using regional equipment and machinery services, ultimately positively impacting regional revenue.

Thus, the fee rate is a very strategic instrument of local fiscal policy, and its establishment should be based on costbenefit analysis, users' purchasing power, and the economic value of the rented equipment and machinery. This result emphasizes that the fee-setting policy can drive regional revenue, provided that the rates consider fairness and the community's ability to pay. Therefore, regular evaluation and adjustment of rates are essential.

Analysis of the Impact of Infrastructure Spending on Equipment and Machinery Rental Revenue at the Public Works and Spatial Planning Office of Jambi Province

The infrastructure spending variable shows a coefficient of 0.000175 with a probability value of 0.0258, indicating significance at the 5% level. This demonstrates that an increase in infrastructure spending positively and significantly impacts the revenue from equipment and machinery rentals. This finding reinforces the theory that government

investment in public infrastructure, such as roads, public facilities, and utilities, can support economic activities and public services, thereby enhancing sustainable sources of regional revenue.

This result aligns with the research by Rini and Prabowo (2020), which states that infrastructure spending is a key driver of regional revenue, particularly from the service sector. The study explains that as the condition and accessibility of public infrastructure improve, the intensity of local facility utilization by the public and businesses also increases. Therefore, the strategy for managing infrastructure spending should not only focus on physical provision but also on enhancing the productivity of assets to maximize contributions to Local Revenue (PAD).

5.0 CONCLUSION

The value of fixed assets positively and significantly affects revenue from fees, with a probability value of 0.0168 (< 0.05), indicating that the greater the asset value owned, the higher the potential revenue that can be generated. The inventory of equipment and machinery does not significantly affect revenue, as shown by a probability value of 0.0968 (> 0.05), suggesting that improvements in asset recording and management systems are still needed. The fee rate positively and significantly impacts revenue, with a probability value of 0.0381 (< 0.05), meaning that rate adjustments can serve as an effective policy tool to increase regional income. Infrastructure spending also significantly affects revenue from fees, with a probability value of 0.0258 (< 0.05), emphasizing the importance of government spending on the development and maintenance of infrastructure as a support for the productivity of regional assets.

6.0 ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude Jambi University for providing the resources and support necessary to complete this study. We would also like to thank all participants who contributed their time and insights to this research. Special appreciation is extended to colleagues and peers who offered valuable feedback during the development of this manuscript.

REFERENCES

Aji, M. R. W. (2018). *Estimation of value and determination of rental fee rates at Bantul Market in 2018*. Yogyakarta: Graduate Program, Gadjah Mada University.

Anartany, S. M., & Suseno, D. A. (2018). Optimization strategies for idle assets in Central Java Province. *Economics Development Analysis Journal*, 7(1).

Arif Wicaksana, H. D. (2021). The impact of asset inventory, asset utilization, security, and maintenance on the optimization of fixed land assets through asset utilization in Malang Regency Government. *Publisia: Journal of Public Administration Science*, 1–14.

Asari, Z. M. (2021). The impact of fixed assets, other assets, and capital expenditure on maintenance expenditure in districts/cities in Aceh Province [Thesis, Faculty of Economics and Business, Syiah Kuala University].

Chodariyanti, L. (2019). Effectiveness of local financial and asset management systems. Media Mahardika, 426-435.

Cresensiana, W. M., & Londa, Y. (2021). The impact of revenue and hot spring tourism rates on regional revenue in Ngada Regency.

Deddi, N. (n.d.). Public sector accounting. Jakarta: Salemba Empat.

Fadli, M. (2018). Optimization strategies for local government asset management in increasing regional revenue. *Journal of Government Management*, 11(2), 67–78.

Feijar, F., & Priyono, B. (2023). Management of regional assets in the form of land and buildings as one of the sources of local original revenue for the Depok City Government. *Journal of Business Administration Economics & Entrepreneurship*, 5(2), 73–84.

Ghozali, I. (2013). *Application of multivariate analysis with IBM SPSS software* (7th ed.). Semarang: Diponegoro University Publisher.

Gima Sugiama, A. (2013). Tourism asset management in Bandung. Guardaya Intimarta.

Hapsila, A., & Budiyanto, B. (2023). The influence of operational costs, income and inventory on profits at PT Papadaan Perdana. *International Conference of Business and Social Sciences*, *3*(1), 20–28. https://doi.org/10.24034/icobuss.v3i1.339

Jamaludin. (2017). The influence of asset inventory, legal asset audit, and asset valuation on the optimization of the utilization of fixed assets (land and buildings) owned by the Government of West Nusa Tenggara Province. *Journal of Financial Management Securities*, I(1), 1–10.

Kieso, D. E., Weygandt, J. J., & Warfield, T. D. (2019). Intermediate accounting. United Kingdom: Wiley.

Lee, D. Y., & Lee, M. J. (2014). A study of the asset valuation method for efficient road facility maintenance. *Journal of Asian Architecture and Building Engineering*, 13(2), 279–286. https://doi.org/10.3130/jaabe.13.279

Lestari, P. A. (2020). Intermediate accounting: Akuntansi keuangan menengah. Klaten: Lakeisha.

Linuhung, T., & Mediawati, E. (2023). Asset management, optimization of asset use, and its effect on local own-source revenue. *International Journal of Business, Law, and Education*, 4(2), 1475–1487. https://doi.org/10.56442/ijble.v4i2.346

Litasari, R. D. (2018). The influence of asset inventory, legal audit, and asset valuation on the optimization of fixed asset utilization in the local government of East Kolaka Regency. *Journal of Economic Development Progress (JPEP)*, 3(2).

Lv, Y., Zheng, Z., & Wang, Y. (2021). The influences of fixed assets on corporate performance: Evidence from manufacturing-listed companies in China. *The Journal of the Korea Contents Association*, 21, 548–561.

Maharani, D., & Supriyanto, B. (2021). Analysis of the effectiveness of fixed asset management on regional retribution revenue. *Journal of Accounting and Regional Finance*, 9(2), 88–97.

Mahmudi. (2012). Regional financial management. Yogyakarta: UPP STIM YKPN.

Martani, D., Sylvia, V. N., Wardhani, R., Farahmita, A., & Tanujaya, E. (2016). *Intermediate financial accounting based on PSAK* (2nd ed.). Jakarta: Salemba Empat.

Melda, N. A., & Arifin, K. Z. (2022). The effect of fixed assets value, regional original income and capital expenditures on maintenance expenditures in the district/city of South Sumatra Province. *International Journal of Management Studies (IJOMS)*.

Mulyasari, M. (2023). Fixed asset management at the Lebak Regency Transportation Service. *International Journal of Social Sciences Review*, 4(1), 45–55. https://doi.org/10.57266/ijssr.v4i1.124

Muslimin, M., Saenong, Z., & Afiat, M. N. (2022). Analysis of regional fee potential in Kendari City. *Journal of Economics, Technology and Entrepreneur*, *1*(2), 108–114.

Nugroho, R. (2019). The impact of fixed asset value and capital expenditure on maintenance expenditure allocation of the Financial Education and Training Agency. *Jurnal BPPK: Financial Education and Training Agency*, *12*, 92–101. https://doi.org/10.48108/jurnalbppk.v12i2.370

Novita, I. S., Pusparini, H., & Mariadi, Y. (2022). Analysis of equipment and machinery rental fee management in increasing local original revenue (PAD) at the Public Works and Spatial Planning Office (DPUPR) of Mataram City. *Journal of Economics and Business*.

Nordiawan, D. (2006). Public sector accounting. Jakarta: Salemba Empat.

Naima, H. K., Burhanuddin, & Kadir, H. A. (2019). Analysis of the effectiveness of heavy equipment usage at the Regional Highways and Spatial Planning Office of Central Sulawesi Province. *Journal of Regional Infrastructure Studies*, 2(1).

Pekuwali. (2020). The impact of optimizing the utilization of fixed assets owned by local governments in increasing regional revenue in Kupang City. *JAKA – Journal of the Accounting Department*, 5(2), 19–24.

Prasetyo, T. (2019). Evaluation of regional fee policies in increasing PAD. *Journal of Regional Fiscal Studies*, 7(4), 89–101.

Putri, F., & Meutia, R. (2023). The influence of fixed assets and local own revenue on maintenance expenditures with previous years' budget balance as moderation (Study on Aceh Government 2016–2020). *Journal of Accounting and Finance*, 11, 65. https://doi.org/10.29103/jak.v11i1.9928

Rahayu, S., & Sunarti, N. (2019). The impact of regional asset management on the optimization of regional revenue. *Journal of Applied Management and Accounting Science (JIMAT)*, 10(1), 55–65.

Rahmawati, M. S., & Kitta, S. (2023). The influence of asset inventory, asset utilization, and asset security on the optimization of fixed assets (land and buildings) in the Makassar City Government. *Ezenza Journal*.

Rini, L., & Prabowo, T. (2020). Analysis of the impact of infrastructure capital expenditure on the increase of local original revenue. *Journal of Public Policy and Regional Finance*, 11(2), 101–110.

Rokhmadi, F. A. (2018). Improving the performance of fixed asset control management in Purbalingga Regency. *Journal of Regional Development Management*, 10(1).

Runiawati, N. (2017). Utilization of regional assets: A theoretical and practical approach to determining asset utilization methods. *Journal of Public Service Management*, *1*(1), 45–58.

Sari, N. I., Pusparini, H., & Mariadi, Y. (2022). Analysis of equipment and machinery rental fee management in increasing local original revenue (PAD) at the Public Works and Spatial Planning Office (DPUPR) of Mataram City. *Journal of Economics and Business*.

Sastroatmodjo, S., & Purnairawan, E. (2021). Introduction to accounting. Bandung: Media Sains Indonesia.

Saputra, R., & Kurniawan, B. (2017). The impact of asset fee policies on regional revenue in Bandung City. *Journal of Regional Economics*, 11(4), 188–195.

Septiana, D., & Zendrato, A. (2014). Management of heavy equipment assets at the Public Works Office of Gunungsitoli City.

Sherly, H. K. (2017). The impact of inventory, legal audit, valuation, and asset condition on the optimization of asset utilization in the Bone Bolango Regency Government. *Journal of Accounting and Auditing Research "Goodwill"*, 8(2).

Siahaan, L. (2017). The impact of regional retribution policies on local original revenue. *Journal of Public Administration*, 5(2), 56–71.

Soleh, M. A., & Rochmansjah. (2010). Asset and resource management. Bandung: Alfabeta.

Sugiyono. (2018). Quantitative, qualitative, and R&D research methods. Bandung: Alfabeta.

Sukarelawati, E. (2019). DPRD Kota Malang highlights the low realization of PAD from lighting taxes. ANTARA News.

Suwanda, D. (2015). Local government asset management (3rd ed.). Jakarta: PPM.

Tahawa, B. (2024). The relationship between total assets and fixed assets with OPD (local government organizations) revenue in Central Sulawesi Province. *EKOMA: Journal of Economics*, *3*(4).

Taufik, M. (2018). Efficiency in local asset management. Jakarta: Gramedia Pustaka Utama.

Wibowo, H., & Santoso, D. (2019). Strategies for increasing local original revenue through asset management. *Journal of Management and Public Policy*, 7(2), 200–211.

Wuga, M. C., Londa, Y., & Ismail, N. (2022). The impact of retribution receipts and tourism tariffs on regional levies in Ngada Regency. *Journal of Accounting Research*, 1(2), 103–113. https://doi.org/10.37478/jria.v1i2.1240

Wulandari, A., & Yusnita, D. (2020). The impact of tariff policies on increasing local original revenue. *Journal of Economics and Regional Policy*, 8(1), 20–30.

Yulia, D., & Sukarno. (2019). Management of regional assets and its impact on local financial performance. *Journal of Regional Economics*, 10(1), 45–58.

Yulianda, D., Basuki, P., & Agustiani, E. D. (2022). Analysis of the potential changes in market tariffs on the increase of market retribution and its contribution to local original revenue (PAD) in Mataram City. *Journal of Constants*.

Yunita, D., & Adriana, N. (2020). Analysis of public service retribution, business service retribution, and certain licensing retribution on local original revenue (PAD) in Bangka Regency. *JEM: Journal of Economics and Management STIE Pertiba Pangkalpinang*, 6(2), 99–107.

Zahra, R., Abdullah, S., Adnan, A., & Yusmita, F. (2023). The impact of local original revenue and fixed assets on maintenance expenditures: Empirical evidence from local governments in Indonesia during the COVID-19 pandemic. *Journal of Student Scientific Research in Accounting*, 8(2), 224–233. https://doi.org/10.24815/jimeka.v8i2.24413